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Abstrac t - -A  classification of tectonic stress regimes and a simple graphical construction of the slip vector applied 
on a fault plane are proposed, from a simplified expression of the stress tensor such that its components depend 
only on the stress ellipsoid shape ratio. 

INTRODUCTION stress regimes which are extensional (01 vertical), strike- 
slip (o2 vertical) and compressional (03 vertical). 

FROM the first theoretical discussions of Wallace (1951) 
and Bott (1959), the analysis of striated fault planes in Let T be a stress tensor with 
terms of tectonic stresses has developed considerably. 
The determination of stress parameters has two main ['ax 0 !z] 
applications. The first one is the reconstruction of stress Ti j  = 0 Cry with (Ix > Oy. (1) 
patterns at different scales (i.e. trajectories of principal 0 0 
stresses). The second application is the possibility of 
predicting the direction of movement  (slip vector) 
along a fault plane which is inaccessible to direct ob- crx, cry and crz are principal stresses parallel, respectively, 
servation, to the three axes x, y (horizontal) and z (vertical) of a 

Cartesian co-ordinate system. Two operations lead to This Short Note presents a classification of tectonic 
stress states in the upper crust, and a simple graphical an expression of the stress tensor depending only on 
method for slip vector construction obtained from a the stress ellipsoid shape ratio $,  defined as (Angelier 

simplified expression of the stress tensor. Requiring only 1975): 
a stereographic diagram, this method is an additional 
contribution to the determination of the maximum shear tp - tIE - 03 with 0 -< $ -< 1. (2) 
stress direction on a given fault plane (see Lisle 1989, crl - o3 
Means 1989, Ragan 1990, De Paor 1990, Fleischmann 
1992, Fry 1992). The first operation is the subtraction of an isotropic 

t e n s o r  due to the overburden. The addition or the 
subtraction of an isotropic tensor does not modify either 

SIMPLIFIED REPRESENTATION OF THE the direction or the magnitude of the applied shear stress 
STRESS TENSOR on a fault plane; it only changes the normal stress: 

 a, emat/ca/ ormu,atio. :[ix O !J.y O ! ] .  
From an arbitrary tectonic stress tensor displaying a 0 0 

vertical principal stress axis, a simplified tensor can be 
calculated which only depends on the stress ellipsoid [ , - c r z  0 !1 
axial ratios, yet preserves the orientation and the sense = 0 Cry - (7= . (3) 
of the shear stress applied on a fault plane. Following 0 0 
Anderson (1951) it can be supposed that, as a first 
approximation, one of three principal axes is vertical. The second operation is the multiplication of this new 
This assumption enables us to define three theoretical expression by a scalar (1/crl - 03). The multiplication of 
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Fig. I. Classification of the different types of tectonic stress states. Each cube represents a stress tensor which is symbolized 
by arrows and a Mohr diagram on which ~s. is indicated (see detailed explanations in textL 

a t enso r  by a scalar  fac tor  modif ies  the  magn i tude  of  the In a strike-sl ip reg ime (0-~ = o l ,  ov = a3, oz = 0 . )  

app l i ed  shear  stress on a fault  p l ane  but  not  its d i rec t ion:  

i xz 0 01 i 2 0 01 . . O" l 0 3  
1 × 0 Ov --  0-z 0 T q  = l) 0 3  - 0-2 0 

Tii - (0-I - 03) 0 1) 0 ol o3 

0 0 0 

I :I I il. 
%:- 0-: 0 I p 0 

0-, - 0-3 = (5 - -~  (6) 
= 0 ov - 0-z " (4) () 0 

0-1 -- 03 
0 0 OJ 

In a c o m p r e s s i o n a l  reg ime (0-~ = o i ,  oy = 0-2, o z = 03) 
This second  o p e r a t i o n  normal i zes  the  c o m p o n e n t s  

of  the stress t ensor  with respec t  to stress d i f ference  1 
(or - o3).  o,  - o3 0 0 

l 
. (Y! - U~ If  o-x, 0-y and oz are  now rep l aced  by the i r  respect ive  T,:/ - - ~J~ _ °3 

values  accord ing  to the  th ree  stress reg imes ,  the  fol low- () " 0 
01 03 ing express ions  are  ob ta ined .  15 0 0 

In  an ex tens ional  regime (o ,  = o2, o,, = o:~, o:  -- o i ) 

[o~-ol 0 0, = 0 ~p () • (7) ] 
,, o t o~ ] (5 () ,I) 

T i i  =: 0 0 3  - 6rl (I 

L (71 - -  O 3 
(1 0 0 Graph ica l  representat ion 

F r o m  these  s imple  express ions ,  a classif icat ion of  the  
[ - ( l  - q)) 0 0 ]  d i f ferent  stress s tates  can be p r e s e n t e d  in one  d i ag ram 

= [ 0 - 1  (,j (5, (Fig. 1). Compre s s iona l  (pos i t ive)  s t resses  and exten-  
0 0 sional  (nega t ive)  s t resses  are  r e p r e s e n t e d ,  respec t ive ly ,  
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by pairs of convergent black arrows and divergent white In an extensional regime 
arrows. The arrows represent the principal stresses in r - ( 1 -  q~)nxl 
the reduced expressions of the stress tensor. These I / 
stresses can be interpreted as the normalized principal Si =[ %ny ]" (9) 
stresses with respect to the difference (Ol - o3) at the 
surface since crz = 0. At the surface, they can be negative 
(in an extensional regime). At depth, stresses rapidly In a strike-slip regime 
become compressional whatever the stress state. How- [(1 - ~)nx] (10) 
ever, the classification and the representation proposed S i = [  -~OnY] 
here can also be applied to describe the stress state at 
depth, taking into account the following conventions: 

(1) it is assumed that one of the three principal stress 
axes is vertical; In a compressional regime 

represented;(2) theisotropic stress due to the overburden OziS not Si = [ n ~ ]  . (11) 

(3) stresses greater than o~ are considered positive; Y 
(4) stresses smaller than cr z are considered negative. 
Figure 1 shows clearly that, for each one of the three 

different stress regimes, the relative magnitudes of Notice that the total stress S is horizontal in each of the 
stresses vary continuously. Different stress states are three regimes. 
defined by the value of the q~ ratio (five particular values For a graphical determination of the slip vector on a 
of ¢ have been chosen to describe this variation: 0.00; fault plane, four operations are necessary (Fig. 2). 
0.25; 0.50; 0.75 and 1.00). (1) The fault plane and principal stress axes are 

Four particular stress states limit the three main rotated so that the principal stress axes are parallel to the 
regimes. They correspond to revolution stress ellipsoids axes of the co-ordinate system: for the extensional 
around oi (radial extension and uniaxial compression) regime, x, y and z are o2, o3 and ox respectively; for the 
or ~r 3 (radial compression and uniaxial extension) axes. strike-slip regime x, y and z are ol, 03 and oz, respec- 

When the intermediate axis in the simplified ex- tively; and for the compressional regime x, y and z are 
pressions is equal to zero (equations 5, 6 and 7), there is Ol, o2 and o3, respectively (Fig. 2, stage 1). 
a transition from one stress regime to another. There are (2) For each fault plane the resolved stress S is deter- 
two possible permutations: between the compressional mined using equations (9), (10) and (11). The vertical 
and the strike-slip regimes (uniaxial compression: component of S is zero in all situations, so S lies in the 
o2 = o3; ~ = 0) and between the extensional and horizontal plane. Its location on the stereographic pro- 
strike-slip regimes (uniaxial extension: oz = ol; q~ = 1). jection is therefore on the exterior circle. To determine 

S, the rotated pole P' of the fault plane is projected onto 
the x and y horizontal axes to obtain the two components 
n X' and ny' which are proportional to nx and ny, respec- 

GRAPHICAL CONSTRUCTION OF THE SLIP tively (Fig. 2, stage 2). Then, a vector V, parallel to S is 
VECTORS defined, with the following co-ordinates. 

In an extensional regime 
From the three expressions of the reduced stress 

tensor, one can determine using a stereographic projec- V = [ - (1  - q))nx' ] (12) 
tion, the direction of the slip vector on a fault plane [ --ny' J" 
whose strike and dip are known. The construction, 
derived from an unpublished result of Etchecopar In a strike-slip regime 
(1984), is based on the calculation of the co-ordinates of [(1 - q~)nx']. 
the resolved stress vector S applied on the fault plane V = (13) 

[ --~ny' J 
which depends only on the q~ value and on the unit vector 
normal to the fault. In a compressional regime 

Let S be the total stress on a fault plane. S is expressed 
as: V =  [ nx ' ]  (14) 

[~ny'J " 
s = T"n, (8) 

The direction of the resolved stress S applied in the 
where T" is the reduced stress tensor, and n the unit fault plane is defined as the intersection between the 
vector perpendicular to the fault, whose co-ordinates vector V and the exterior circle. 
are nx, ny and nz in the Cartesian reference frame (3) The slipvectorr,  which correspondstotheprojec- 
(x, y, z). tion of S on the fault plane is determined (Fig. 2, stage 

Then, in the three stress regimes, using equations (5), 3). One only has to find the plane which passes through 
(6), (7) and (8) the coordinates of S are the following, both S and the fault pole, P. The intersection of this 
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Fig. 2. Graphical determination using a stereographic projection (lower hemisphere) of tile slip vector o i l  a given fault 
plane from the reduced stress tensor expression, for the three main tectonic stress regimes. (1) Rotation of the fault plane 
and its pole in order to bring back to vertical one of the three principal stress axes according to the considered stress regime. 
(2) Construction of the horizontal vector V that is parallel to the resolved stress vector S applied to the fault plane. 
(3) Construction of the slip vector r (parallel to the shear stress) applied to the fault plane by determining the plane which 
passes through the vector S and the fault pole P'.  (4) Rotation of the fault plane back to the initial position. Note that in the 
actual examples, the required rotations in steps (1) and (4), will not generally be rotations about the fault strike direction as 

rotation axis. 
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plane with the fault plane gives the direction of ~:. Its Means 1989, Ragan 1990, Fleischmann 1992, Fry 1992). 
sense is the same as vector S. From that point of view, it can easily be applied in the 

(4) The calculated slip vector 1: and the fault plane are field and is therefore useful for geologists. For instance, 
rotated back to the initial reference frame (Fig. 2, stage it enables the prediction of the slip direction on large 
4). This last rotation is opposite to the one made during faults around which the stress state is known. 
the first operation. 
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